Analysis of Classification Algorithms Applied to Hepatitis Patients
نویسندگان
چکیده
منابع مشابه
Analysis of Classification Algorithms Applied to Hepatitis Patients
This paper mainly deals with various classification algorithms namely, Bayes. NaiveBayes, Bayes. BayesNet, Bayes. NaiveBayesUpdatable, J48, Randomforest, and Multi Layer Perceptron. It analyzes the hepatitis patients from the UC Irvine machine learning repository. The results of the classification model are accuracy and time. Finally, it concludes that the Naive Bayes performance is better than...
متن کاملClassification algorithms applied to narrative reports
Narrative text reports represent a significant source of clinical data. However, the information stored in these reports is inaccessible to many automated decision support systems. Data mining techniques can assist in extracting information from narrative data. Multiple classification methods, such as rule generation, decision trees, Bayesian classifiers, and information retrieval were used to ...
متن کاملImpact of Patients’ Gender on Parkinson’s disease using Classification Algorithms
In this paper the accuracy of two machine learning algorithms including SVM and Bayesian Network are investigated as two important algorithms in diagnosis of Parkinson’s disease. We use Parkinson's disease data in the University of California, Irvine (UCI). In order to optimize the SVM algorithm, different kernel functions and C parameters have been used and our results show that SVM with C par...
متن کاملComparison of Neural Classification Algorithms Applied to Land Cover Mapping
We compared the performance of several supervised classification algorithms on multi-source remotely sensed images. Apart from the Multi-Layer Perceptron, K-Nearest-Neighbour and Radial Basis Function network approaches, we looked more in detail at the Support Vector Machine classifier, which recently showed promising results in our setting. In particular, it is able to provide meaningful answe...
متن کاملINTERVAL ANALYSIS-BASED HYPERBOX GRANULAR COMPUTING CLASSIFICATION ALGORITHMS
Representation of a granule, relation and operation between two granules are mainly researched in granular computing. Hyperbox granular computing classification algorithms (HBGrC) are proposed based on interval analysis. Firstly, a granule is represented as the hyperbox which is the Cartesian product of $N$ intervals for classification in the $N$-dimensional space. Secondly, the relation betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2013
ISSN: 0975-8887
DOI: 10.5120/10157-5032